
MTH 2310, LINEAR ALGEBRA

MINITEST 4 REVIEW, DR. ADAM GRAHAM-SQUIRE

(1) True/False: If True, justify your answer with a brief explanation. If False, give a counterex-

ample or a brief explanation.

(a) u · v− v · u = 0.

True, this is the same as u · v = v · u which is a property of the dot product.

(b) The orthogonal projection of y onto v is the same as the orthogonal projection of y

onto cv whenever c 6= 0.

True, because
y · (cv)

(cv) · (cv)
(cv) =

c2(y · v)

c2(v · v)
v = projvy.

(c) The orthogonal projection of y onto v is the same as the orthogonal projection of v

onto cy. False, because the projection onto v is in the direction of v, and the projection

onto y is in the direction of y. If those two vectors are not pointed in the same direction

(and generally they will not), you will not get the same result for the two orthogonal

projections. You could also just take any two vectors and do projvy and vice versa to

show that they will not be equal.

(d) If W is a subspace of Rn and if v is in both W and W⊥, then v must be the zero

vector. True, because if v is in both, then it must be orthogonal to itself, that is

v · v = ||v||2 = 0, which is only true if you are the zero vector

(e) The least-squares solution of Ax = b is the point in the column space of A that is

closest to b. True, that is the whole point of the least-squares solution. We derived

the calculation of the least-squares solution from the orthogonal projection of b onto

the column space of A, so they are in fact the same thing.

(2) Let w =

 3

−1

−5

 and x =

 6

−2

3

. (a) Calculate
x ·w
w ·w

w.

Ans:

 3/7

−1/7

−5/7

.

(b) Find a unit vector orthogonal to x (Hint: first find an orthogonal vector by inspection

and then normalize it).

Ans: One answer is

1/
√

10

3/
√

10

0

, but there are an infinite number of possible answers.
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(3) Suppose y is orthogonal to u and v. Show that y is orthogonal to every vector in Span{u,v}.
(Hint: An arbitrary w in Span{u,v} is of the form w = c1u + c2v.)

Ans: y ·w = y · (c1u + c2v) = c1(y · u) + c2(y · v) = 0 because

y · u = y · v = 0.

(4) Let y =

[
2

6

]
and u =

[
7

1

]
. Write y as the sum of a vector in Span{u} and a vector

orthogonal to u.

Ans: y = ŷ + z where ŷ is a scalar multiple of u and z is orthogonal to u. Calculation

gives

ŷ =
y · u
u · u

u =

[
14/5

2/5

]
and

z = y− ŷ =

[
−4/5

28/5

]

(5) Suppose W is a subspace of Rn spanned by n nonzero orthogonal vectors. Explain why

W = Rn.

Ans: The orthogonal vectors must be linearly independent (we proved in class that

orthogonal vectors are always linearly independent), and thus they will form a basis for

the subspace W since we know that they span (alternatively, since there are n linearly

independent vectors, and we are in Rn, they must be a basis by the basis theorem). Since

there are n of them, W has dimension n and therefore must be all of Rn.

(6) Let W be a subspace of Rn. Prove that dim W + dim W⊥ = n by doing the following:

(a) Suppose W has an orthogonal basis {w1, w2, . . . , wp}, and let {v1, v2, . . . , vq} be an

orthogonal basis for W⊥. Explain why {w1, w2, . . . , wp, v1, v2, . . . , vq} is an orthogonal set.

Ans: By the definition of W⊥, every vector in W⊥ will be orthogonal to every vector in

W . In particular, this means that every one of the basis vectors in W⊥ will be orthogonal

to every one of the basis vectors in W . Since the original two bases were already orthogonal,

the whole set put together will be orthogonal.

(b) Explain why {w1, w2, . . . , wp, v1, v2, . . . , vq} spans Rn.

Ans: Let a be any vector in Rn, and â the orthogonal projection of a onto W . Then

by orthogonal decomposition, a = â + z, where z is orthogonal to â. â is in the column

space of W because it is a projection vector onto that space, and z is in the column space

of W⊥ because z is orthogonal to something in W . This means that â can be written as

a linear combination of {w1, w2, . . . , wp} and z can be written as a linear combination of

{v1, v2, . . . , vq}, so a can be written as a linear combination of {w1, w2, . . . , wp, v1, v2, . . . , vq}.
Since a was an arbitrary vector in Rn, this means that {w1, w2, . . . , wp, v1, v2, . . . , vq} must

span Rn, as desired. I am pretty sure there is any easier way to explain this as well, but I

can’t come up with it right now.
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(c) Explain why this proves that dim W + dim W⊥ = n.

Ans: The dimension of span{w1, w2, . . . , wp, v1, v2, . . . , vq} = p+q because {w1, w2, . . . , wp, v1, v2, . . . , vq}
has p+q vectors in it. We also know that {w1, w2, . . . , wp, v1, v2, . . . , vq} is linearly indepen-

dent and spans Rn, so it must be a basis for Rn and thus span{w1, w2, . . . , wp, v1, v2, . . . , vq}
must equal n, so p+ q = n. But dim W = p and dim W⊥ = q since that is how many basis

vectors they each have, so by substitution we have dim W + dim W⊥ = n.

(7) Find a least-squares solution for Ax = b and compute the least-squares error for

A =

1 3

1 −1

1 1

 b =

5

1

0


Ans: ATA =

[
3 3

3 11

]
, ATb =

[
6

14

]
, so the least-squares solution of ATAx = ATb is

x̂ =

[
1

1

]
(which you can get by either augmenting and row reducing or multiplying by the

inverse of ATA). This means that b̂ = Ax̂ =

4

0

2


and the least-squares error is ||b− b̂|| =

√
12 + 12 + 22 =

√
6.

And I just realized that this is Exercise 3 in your section 6.5 notes, so...oops.


